Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar

نویسندگان

  • Amit K. Jaiswal
  • Yigal Elad
  • Indira Paudel
  • Ellen R. Graber
  • Eddie Cytryn
  • Omer Frenkel
چکیده

Biochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion. Biochar suppressed Fusarium crown and root-rot of tomato and simultaneously improved tomato plant growth and physiological parameters. Furthermore, biochar reduced Fusarium root colonization and survival in soil, and increased the culturable counts of several biocontrol and plant growth promoting microorganisms. Illumina sequencing analyses of 16S rRNA gene revealed substantial differences in rhizosphere bacterial taxonomical composition between biochar-amended and non-amended treatments. Moreover, biochar amendment caused a significant increase in microbial taxonomic and functional diversity, microbial activities and an overall shift in carbon-source utilization. High microbial taxonomic and functional diversity and activity in the rhizosphere has been previously associated with suppression of diseases caused by soilborne pathogens and with plant growth promotion, and may collectively explain the significant reduction of disease and improvement in plant performance observed in the presence of biochar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compost and biochar alter mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp. lycopersici

Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was...

متن کامل

The Effect of Fruit Trees Pruning Waste Biochar on some Soil Biological Properties under Rhizobox Conditions

The pyrolysis of fruit trees Pruning waste to be converted to biochar with microbial inoculation is a strategy improving the biological properties in calcareous soils. In order to investigate the biochar effect on some soil biological properties of the soil in the presence of microorganisms, a factorial experiment was carried out in a completely randomized design in the rhizobox under greenhous...

متن کامل

Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria

The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, ...

متن کامل

Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression.

Microbial community profiling of samples differing in a specific ecological function, i.e., soilborne plant disease suppression, can be used to mark, recover, and ultimately identify the bacteria responsible for that specific function. Previously, several terminal restriction fragments (TRF) of 16S rRNA genes were statistically associated with damping-off disease suppression. This work presents...

متن کامل

Structure and Activity of Denitrifier Communi- ties in Biochar-Amended Soil and Their Impact on N2O Emissions

Nitrous oxide is a greenhouse gas with a global warming potential about 300 times higher than CO2. The main sources of N2O are microbial-mediated nitrogen transformation reactions in soils. Denitrification represents one of the major N2Oproducing pathways in oxygen-limited zones. Soil biochar amendment has been demonstrated to reduce N2O emissions in microcosms and in the field. Although N2O em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017